Classical Predicative Logic-Enriched Type Theories

نویسندگان

  • Robin Adams
  • Zhaohui Luo
چکیده

A logic-enriched type theory (LTT) is a type theory extended with a primitive mechanism for forming and proving propositions. We construct two LTTs, named LTT0 and LTT ∗ 0, which we claim correspond closely to the classical predicative systems of second order arithmetic ACA0 and ACA. We justify this claim by translating each second-order system into the corresponding LTT, and proving that these translations are conservative. This is part of an ongoing research project to investigate how LTTs may be used to formalise different approaches to the foundations of mathematics. The two LTTs we construct are subsystems of the logic-enriched type theory LTTW, which is intended to formalise the classical predicative foundation presented by Herman Weyl in his monograph Das Kontinuum. The system ACA0 has also been claimed to correspond to Weyl’s foundation. By casting ACA0 and ACA as LTTs, we are able to compare them with LTTW. It is a consequence of the work in this paper that LTTW is strictly stronger than ACA0. The conservativity proof makes use of a novel technique for proving one LTT conservative over another, involving defining an interpretation of the stronger system out of the expressions of the weaker. This technique should be applicable in a wide variety of different cases outside the present work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Type-Theoretic Framework for Formal Reasoning with Different Logical Foundations

A type-theoretic framework for formal reasoning with different logical foundations is introduced and studied. With logic-enriched type theories formulated in a logical framework, it allows various logical systems such as classical logic as well as intuitionistic logic to be used effectively alongside inductive data types and type universes. This provides an adequate basis for wider applications...

متن کامل

ar X iv : 0 80 9 . 20 61 v 1 [ cs . L O ] 1 1 Se p 20 08 Weyl ’ s Predicative Classical Mathematics as a Logic - Enriched Type Theory

We construct a logic-enriched type theory LTTwthat corresponds closely to the predicative system of foundations presented by Hermann Weyl in Das Kontinuum. We formalise many results from that book in LTTw, including Weyl’s definition of the cardinality of a set and several results from real analysis, using the proof assistant Plastic that implements the logical framework LF. This case study sho...

متن کامل

ar X iv : 0 80 9 . 20 61 v 3 [ cs . L O ] 1 5 Ja n 20 09 Weyl ’ s Predicative Classical Mathematics as a Logic - Enriched Type Theory

We construct a logic-enriched type theory LTTw that corresponds closely to the predicative system of foundations presented by Hermann Weyl in Das Kontinuum. We formalise many results from that book in LTTw, including Weyl’s definition of the cardinality of a set and several results from real analysis, using the proof assistant Plastic that implements the logical framework LF. This case study sh...

متن کامل

ar X iv : 0 80 9 . 20 61 v 2 [ cs . L O ] 1 2 Se p 20 08 Weyl ’ s Predicative Classical Mathematics as a Logic - Enriched Type Theory

We construct a logic-enriched type theory LTTwthat corresponds closely to the predicative system of foundations presented by Hermann Weyl in Das Kontinuum. We formalise many results from that book in LTTw, including Weyl’s definition of the cardinality of a set and several results from real analysis, using the proof assistant Plastic that implements the logical framework LF. This case study sho...

متن کامل

Heyting-valued interpretations for Constructive Set Theory

The theory of locales [23] has a twofold interplay with intuitionistic mathematics: first of all, the internal logic of toposes and intuitionistic set theories provide suitable settings for the development of the theory of locales [24], and secondly, the notion of a locale determines two important forms of toposes and of interpretations for intuitionistic set theories, namely localic toposes [2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 161  شماره 

صفحات  -

تاریخ انتشار 2010